Thursday, August 6, 2009

Gamma ray

Gamma rays are electromagnetic radiation of high energy. They are produced by sub-atomic particle interactions, such as electron-positron annihilation, neutral pion decay, radioactive decay, fusion, fission or inverse Compton scattering in astrophysical processes. Gamma rays typically have frequencies above 1019 Hz and therefore energies above 100 keV and wavelength less than 10 picometers, often smaller than an atom. Gamma radioactive decay photons commonly have energies of a few hundred KeV, and are almost always less than 10 MeV in energy.

Shielding gamma rays requires large amounts of mass. They are better absorbed by materials with high
atomic numbers and high density, although neither effect is important compared to the total mass per area in the path of the gamma ray. For this reason, a lead shield is only modestly better (20-30%) as a gamma shield than an equal weight of another shielding material such as aluminum, concrete, or soil; the lead's major advantage is in its compactness.
The higher the energy of the gamma rays, the thicker the shielding required. Materials for shielding gamma rays are typically measured by the thickness required to reduce the intensity of the gamma rays by one half (the half value layer or HVL). For example, gamma rays that require 1 cm (0.4 inches) of
lead to reduce their intensity by 50% will also have their intensity reduced in half by 6 cm (2½ inches) of concrete or 9 cm (3½ inches) of packed soil. However, (again) the mass of this much concrete or soil is only 20-30% larger than that of this amount of lead. Depleted uranium is used for shielding in portable gamma ray sources, but again the savings in weight over lead is modest, and the main effect is to reduce shielding bulk.

0 comments: